import torch
# A Python class inherited from `torch.nn.Module`
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv1d(in_channels=1, out_channels=3, kernel_size=1)
self.linear = torch.nn.Linear(3, 1)
def forward(self, x):
x = x.unsqueeze(1) # tensor shape: (1,3) -> (1,1,3)
x = self.conv(x) # tensor shape: (1,1,3) -> (1,3,3)
x = x.mean(dim=-1) # tensor shape: (1,3,3) -> (1,3)
return self.linear(x) # tensor shape: (1,3) -> (1,1)
m = Model() # Model initialization
x = torch.randn(1, 3) # Tensor inputs
inputs = [x]
output = m(x)
print(output)
"""
tensor([[-0.0931]], grad_fn=)
"""